Sobre a teoria das proporções, o Método da Exaustão e os incomensuráveis
Abstract
Este artigo busca, inicialmente, mostrar o aprimoramento na utilização de Número e Forma desde as civilizações egípcias, babilônicas e gregas, apresentando a evolução dos processos operatórios. Em seguida, aborda o caráter mensurável das medidas e as limitações de se operar com os números racionais e suas consequências na sociedade Pitagórica. Tal abalo nos paradigmas pitagóricos revelará a riqueza dos segmentos incomensuráveis, por meio de demonstrações da relevância histórica e prática do Método da Exaustão e da Teoria das Proporções de Eudoxo, bem como um processo memorável de Dedekind para relacionar os números irracionais com os racionais.
Downloads
Metrics
References
AABOE, A. Episódios da história antiga da matemática. São Paulo: Sociedade Brasileira de Matemática (SBM), 1984.
BARON, M. E. A matemática grega. Brasília: Editora Universidade de Brasília (UnB), 1985.
BOYER, C.B. História da matemática. São Paulo: Edgar Blucher, 1998.
CAJORI, F. A. History of mathematical notations. Vols I e II, Dover Publications, 1993.
CARAÇA, B. de Jesus. Conceitos fundamentais da matemática. Lisboa: Gradiva, 1978.
CASTELNUOVO, E. Geometria intuitiva. Barcelona: Editorial Labor, 1996.
CONTADOR, P. R. M. Matemática, uma breve história. São Paulo: Editora da Física, 2006.
DANTZIG, T. Número, a linguagem da ciência. Rio de Janeiro: Zahar, 1970.
DAVIS, P. J.; HERSH, R. A experiência matemática. Rio de Janeiro, 1986.
EUCLIDE. Les éléments. Volume 3, Livre X. Presses Universitaires de France, 1998.
EUCLIDE. Les éléments. Livre V et X. Presses Universitaires de France, 1998.
EUCLIDES .O primeiro livro dos elementos de Euclides. Natal: Editora SBHMat, 2001.
EVES, H.W. An introduction to the history of mathematics. Fourth ed. U.S.A, 1976.
FRITZ, K.V. The discovery of incomensurability by Hippasus of Metapontum. In: Annals of Mathematics, v. 46, n. 2, April, 1945.
GARBI, G. G. O romance das equações algébricas. São Paulo: Makron Books, 1997.
GRANGER,G.G. O irracional. São Paulo: Editora Unesp, 2002.
HEATH, T.L. The thirteen books of Euclid´s elements. New York: Dover, 1956.
KATZ, V. J. A History of Mathematics - an introduction. New York: Dover, 1993.
MIGUEL, A. História da matemática em atividades didáticas: números irracionais. Natal: Editora da UFRN, 2005.
MLODINOW, L. A janela de Euclides: a história da geometria: das linhas paralelas ao hiperespaço. São Paulo: Geração Editorial, 2004.
NEUGEBAUER, O. The exact sciences in antiquity. 2º ed. Providence: Brown University Press, 1957.
POLCINO, F.C. A geometria na antiguidade clássica. São Paulo: FTD, 1999.
RUSSELL, B. Introdução à filosofia matemática. Rio de Janeiro: Zahar Editora, 2006.
RUTHEFORD, W. Pitágoras. São Paulo: Mercuryo, 1984. VLASTOS, G. O universo de Platão. Brasília: Editora Universidade de Brasília, 1987.
Downloads
Published
Métricas
Visualizações do artigo: 438 PDF (Português (Brasil)) downloads: 93
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.