Intuition in the field of mathematics based on the works of Efraim Fischbein (1920-1998)
DOI:
10.37001/remat25269062v19id625Keywords:
Intuition, Efraim Fischbein, Categories of Intuitive ReasoningAbstract
This work addresses the concept of intuition, as well as elucidates the manifestation of different categories of intuitive reasoning, which are analyzed from a theoretical perspective, aiming at the possibilities of its identification and contribution to the educational area. Thus, the objective of this paper is to present intuition and its categorization, from the perspective of Efraim Fischbein (1920-1998), as a theory to be considered, seeking a more comprehensive view of its mechanisms, and using research evidence from his works, as a way of to support and expand the interpretation and use of intuitive reasoning aimed at the field of Mathematics. To this end, bibliographic research was adopted as a methodology for this work, in which a content analysis is carried out, seeking to substantiate a reflective investigation on some of the works by the aforementioned author. Finally, in the field of Mathematics Education, it is important to develop in students the ability to distinguish between perception, intuitive feelings, intuitive beliefs and formally held convictions, developing appropriate interpretations in the field of intuition, together with the evolution of formal reasoning structures logical.
Downloads
Metrics
References
ALVES, F. R. V. Aplicações da Sequência Fedathi na promoção das categorias do raciocínio intuitivo no Cálculo a Várias Variáveis. 2011a. 353 f. Tese (Doutorado em Educação) – Universidade Federal do Ceará, Fortaleza, 2011. Disponível em: http://www.teses.ufc.br/tde_biblioteca/login.php. Acesso em: 06 jun. 2021.
ALVES, F. R. V. Insight: descrição e possibilidades de seu uso no ensino do Cálculo. Revista Eletrônica Vidya, v. 32, n. 2, p. 149-161, 2012. Disponível em: https://periodicos.ufn.edu.br/index.php/VIDYA/article/view/279. Acesso em: 15 set. 2021.
ALVES, F. R. V. Categorias intuitivas para o ensino do Cálculo: descrição e implicações para o seu ensino. Revista Brasileira de Ensino de Ciências e Tecnologia, v. 9, n. 3, p. 1-21, 2016.
ALVES, F. R. V.; BORGES NETO, H. A intuição na Sequência Fedathi: uma aplicação no Ensino Médio. Conexões, Ciência e Tecnologia, v. 3, n. 1, p. 30-41, 2009. DOI: https://doi.org/10.21439/conexoes.v3i1.126.
ALVES, F. R. V.; BORGES NETO, H. A contribuição de Efraim Fischbein para a Educação Matemática e a formação do professor. Conexões, Ciência e Tecnologia, v. 5, n. 1, p. 38-54, 2011. DOI: https://doi.org/10.21439/conexoes.v5i1.441.
BACHELARD, G. O novo espírito científico. In: Os Pensadores. São Paulo: Abril Cultural, 1984.
BARDIN, L. Análise de conteúdo. São Paulo: Edições 70, 2011.
FISCHBEIN, E. Intuition and Proof. For the Learning of Mathematics, v. 3, n. 2, p. 9-18,24, nov.,1982. Disponível em: https://www.jstor.org/stable/40248127?seq=1. Acesso em: 11 nov. 2020.
FISCHBEIN, E. Intuition in Science and Mathematics: an educational approach. Netherlands: D. Reidel Public, Mathematics Educational Library, 1987a.
FISCHBEIN, E. The intuitive dimension of Mathematical Reasoning. In: ROMBERG, T. A.; STEWART, D. M. (Orgs.). The Monitoring of School Mathematics: Background Papers, volume 2: Implications from Psychology. Wisconsin Center for Education Research, Madison, p. 47-70, 1987b.
FISCHBEIN, E. The Theory of Figural Concepts. Educational Studies in Mathematics, v. 24, n. 2, p. 139-162, 1993.
FISCHBEIN, E. Intuitions and Schemata in Mathematical Reasoning. In: Educational Studies in Mathematics, v. 38, n. 11, p. 11-50, 1999.
FISCHBEIN, E.; GAZIT, A. Does the Teaching of Probability improve probabilistic intuitions? In: Educational Studies in Mathematics. v. 15, n. 17, p. 1-24, 1984.
NASSER, L. O papel da abstração no pensamento matemático avançado. In: Flores, Rebeca (Ed.), Acta Latinoamericana de Matemática Educativa. México: Comité Latinoamericano de Matemática Educativa, 2013. cap. 2, p. 891-897. Disponível em: http://funes.uniandes.edu.co/4175/1/NasserOpapelALME2013.pdf. Acesso em: 30 set. 2020.
POINCARÉ, H. La logique et l’intuition dans la Science Mathématique. L´enseignement Mathématique, v. 1, p. 157-162, 1899.
POINCARÉ, H. A ciência e a hipótese. Brasília: Editora da UnB, 1988.
Downloads
Published
Métricas
Visualizações do artigo: 212 PDF (Português (Brasil)) downloads: 119
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.