El uso de la simulación para la enseñanza de la estadística inferencial: el caso del teorema del límite central
DOI:
10.37001/remat25269062v17id491Palabras clave:
Simulación, Teorema del límite cent, Estadística, Hoja de cálculo electrónicaResumen
Los conceptos de Estadísticas Inferenciales constituyen la base por la cual la práctica de Estadística se desarrolla en la mayoría de los cursos de grado. El Teorema de Límite Central es el pilar central para el apoyo a los análisis paramétricos y, por lo tanto, a una parte significativa de las estadísticas inferenciales. El objetivo de este artículo es presentar un módulo de simulación utilizando una hoja de cálculo para el aprendizaje interactivo que ilustre los conceptos y la validez del Teorema de Límite Central para estudiantes de ciencias biológicas como una actividad formativa. Los resultados indican que la simulación tiene la capacidad de promover el aprendizaje activo con el uso de la tecnología para desarrollar la comprensión conceptual del teorema. Además, la actividad de simulación ayudó al profesor a entender las dificultades presentadas durante el proceso, lo que permite proponer nuevas estrategias para la enseñanza de este teorema.
Descargas
Métricas
Citas
BAKER, J.; SUGDEN, S. Spreadsheets in Education –The First 25 Years. Spreadsheets in Education, 1(1), 2003. Disponível em <http://epublications.bond.edu.au/ejsie/vol1/iss1/2> Acessado em: 01 de maio de 2019.
BARR, G. D., SCOTT, L. Teaching statistics in a spreadsheet environment using simulation. Spreadsheets in Education, v.4, n.3, p.1-16, 2001.
BEN-ZVI, D. Toward understanding the role of technological tools in statistical learning. Mathematical Thinking and Learning, v.2, n.1, p.127-155, 2000.
BRUSSOLO, M. E. Understanding the Central Limit Theorem the Easy Way: A Simulation Experiment. 2nd Innovative and Creative Education and Teaching International Conference (ICETIC2018), Badajoz, Spain, 20–22 June 2018.
CHAAMWE, N.; SHUMBA, L. ICT Integrated Learning: Using Spreadsheets as Tools for e-Learning, A Case of Statistics in Microsoft Excel. International Journal of Information and Education Technology, v.6, n.6, p.435-440, 2016.
CHANCE, B., DELMAS, R. C., & GARFIELD, J. Reasoning About Sampling Distributions. In Ben-Zvi & J. Garfield (Eds.). The challenge of developing statistical literacy, reasoning and thinking (pp. 295-323). The Netherlands: Kluwer Academic Publishers, 2004.
CHANCE, B.; BEN-ZVI, D.; GARFIELD, J.; MEDINA, E. The role of technology in improving Student Learning of Statistics. Technology Innovations in Statistics Education, v.1, n.1, p.1-27, 2007.
CHANDRAKANTHA, L. Simulation using excel data tables in teaching introductory statistics. Journal of Computing Sciences in Colleges, v.29, n.3, p.29-34, 2014.
DE JONG, T.; VAN JOOLIGEN, W. Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, v.68, n.2, p.179-201, 1998.
DELMAS, R. C.; GARFIELD, J.; CHANCE, B. L. A Model of Classroom Research in Action: Developing Simulation Activities to Improve Students' Statistical Reasoning. Journal of Statistics Education, v.7, n.3, p.1-16, 1999.
DINOV, I. D.; CHRISTOU, N.; SANCHEZ, J. Central limit theorem: New SOCR applet and demonstration activity. Journal of Statistics Education, v.16, n.2, p.1-15, 2008.
ERICKSON, T. Using Simulation to Learn about Inference. in A Rossman and B Chance, (eds.) Proceedings of the Seventh International Conference on Teaching Statistics. Voorburg, The Netherlands: International Statistical Institute, 2006. < http:// www.ime.usp.br/~abe/ICOTS7/Proceedings/index.html>. Acessado em 05 de junho de 2019.
FERREIRA, R. S; KATAOKA, V. Y.; KARRER, M. Teaching probability with the support. Statistics Education Research Journal, v.13, n.2, p.132-147, 2014.
HAGTVEDT, R.; JONES, G. T.; JONES, K. Pedagogical Simulation of Sampling Distributions and the Central Limit Theorem. Teaching Statistics, v.29, n.3, p.94-97, 2007.
______. Teaching confidence intervals using simulation. Teaching Statistics, v.30, n.2, p.53-56, 2008.
HANEY, M. H. A Spreadsheet Simulation to Teach Concepts of Sampling Distributions and the Central Limit Theorem. Spreadsheets in Education, 8(3), Article 3, 2015.
HUNT, N. Individualized Statistics Coursework Using Spreadsheets. Teaching Statistics, v.29, n.2, p.38-43, 2007.
______. Using Microsoft Office to Generate Individualized Tasks for Students. Teaching Statistics. V.27, n.2, p.45-48, 2005.
ISLAM, M. R. Sample Size and Its Role in Central Limit Theorem (CLT). Computational and Applied Mathematics Journal, v.4, n.1, p.1-7, 2008.
KLAHR, D.; NIGAM, M. The equivalence of learning paths in early science instruction. Psychological Science, v.15, n.10, p.661-667, 2004.
LANE, D. M. E PERES, S. C. Interactive simulations in the teaching of statistics: Promise and Pitfalls. Proceedings of the Seventh Annual Meeting of the International Conference on the Teaching of Statistics, Salvador, Brazil, 2006. Disponível em: < https://www.ruf.rice.edu/~lane/papers/interactive-simulations.pdf>. Acessado em 10 novembro de 2018.
MAURER, K.; LOCK, D. Comparison of Learning Outcomes for Simulation-based and Traditional Inference Curricula in a Designed Educational Experiment. Technology Innovations in Statistics Education, v.9, n.1, 2016. Disponível em: https://escholarship.org/uc/item/0wm523b0. Acessado em 10 novembro de 2018.
MILLS, J. D. Using Computer Simulation Methods to Teach. Statistics: A Review of the Literature. Journal of Statistics Education, v.10, n.1, p.1-20, 2002.
NEUMANN, D. L.; NEUMANN, M. M.; HOOD, M. Evaluating computer-based simulations, multimedia and animations that help integrate blended learning with lectures in first year statistics. Australasian Journal of Educational Technology, v.27, n.2, p.274-289, 2011.
PACE, L. A.; BARCHARD K. A. Using a spreadsheet programme to teach introductory statistics: reducing anxiety and building conceptual understanding. Int. J. Innovation and Learning, v.3, n.3, p.267-283, 2006.
PFANNKUCH, M.; BROWN, C. M. Building on and Challenging Students' Intuitions About Probability: Can We Improve Undergraduate Learning? Journal of Statistics Education, v.4, n.1, p.1-15, 1996.
PATRON, H.; SMITH, W. J.; BOLD, D. Demonstrating the central limit theorem in the classroom: an excel exercise. Journal for Economic Educators, v.9, n.1, p. 1-15, 2009
RUGGIERI, E. Visualizing the Central Limit Theorem Through Simulation. PRIMUS, v.26, n.3, p.229-240, 2016.
SHI, N; HE, X.; TAO, J. Understanding Statistics and Statistics Education: A Chinese Perspective. Journal of Statistics Education, v.17, n.3, p.1-9, 2009.
TAYLOR, M. A. Simulating the central limit theorem. The Stata Journal, v.18, n.2, p.345-356, 2018.
TISHKOVSKAYA, S.; LANCASTER, G. A. Statistical education in the 21st Century: A review of challenges, teaching innovations and strategies for reform. Journal of Statistics Education, v.20, n.1, p.1-56, 2012.
TROSSET M. W. An Introduction to Statistical Inference and Data Analysis. Ebook. 2001. Disponível em: http://inis.jinr.ru/sl/M_Mathematics/MV_Probability/MVas_Applied%20statistics/%D0%A2rosset%20Introduction.pdf. Acessado em 29 dezembro de 2020.
WARNER, C. B.; MEEHAN, A. M. Microsoft Excel As a Tool for Teaching Basic Statistics. Teaching of Psychology, v.28, n.4, p.295-298, 2001.
Descargas
Publicado
Métricas
Visualizações do artigo: 160 PDF (Português (Brasil)) downloads: 58 HTML (Português (Brasil)) downloads: 0 VISOR (Português (Brasil)) downloads: 0 EPUB (Português (Brasil)) downloads: 29
Cómo citar
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.