Las paradojas en la enseñanza de las matemáticas: una perspectiva histórica
DOI:
10.37001/remat25269062v19id588Palabras clave:
Números, Función, Historia de las MatemáticasResumen
In mathematics' development, the paradoxes exerted a remarkable and predominant role in various periods of the progress of science, promoting revolutions, transformations, and helping to extend ideas, arguments, concepts, methods, rigor and logic. Thus, in this paper, we discussed some paradoxes involving numbers and functions, and we discussed also their contributions to the construction of axiomatic set of negative numbers, for a rigorous conceptualization of infinite limits, and for formalize the concept of function. With it, we pointed the paradoxes as a resource for the teaching and for the learning of mathematics, which in addition to arouse curiosity, create an environment for discussion, encourage students to examine assumptions and show that the failures of logic, and erroneous arguments are a common feature in the evolution of mathematics, can also help teachers to develop a new attitude towards mistakes made by students.
Descargas
Métricas
Citas
BALIEIRO FILHO, I.F.; SOARES, M. R. Uma Resposta da Matemática Moderna para os Paradoxos de Zenão: Dicotomia e Aquiles e a Tartaruga. Educação Matemática em Revista, ano 13, nº 24. (p. 40 – 45). SBEM: São Paulo, 2008.
BARBIN, E. Integrating history: research perspectives. In FAUVEL, J.; VAN MAANEN, J. (2002). History in Mathematics Education (pp. 63 – 70). New York: Kluwer Academic Publishers, 2002.
BARON, M. G. The Origins of the Infinitesimal Calculus. New York: Dover, 1987.
BLOCH, E. D. The Real Numbers and Real Analysis. New York: Springer, 2010.
BORASI, R. Reconceiving Mathematics Instruction: A Focus on Errors. New Jersey: Ablex Publishing Corporation, 1996.
CHANTRAINE, P. Dictionnaire Étymologique de la Langue Grecque: Histoire des Mots. Tome I e III. Paris: Éditions Klincksieck, 1974.
CINTRA, F. P. O conhecimento de futuros professores de Matemática sobre o conceito de função e suas implicações para a atividade docente. Ilha Solteira: UNESP, 2018. 117p.
DICKSON, L. E. History of the Theory of Numbers, Volume I: Divisibility and Primality. New York: Dover, 2005.
KATZ, V. J. A History of Mathematics: An Introduction. Boston: Pearson Education, 2009.
KATZ, V. J. Using History to Teach Mathematics: An International Perspective. Washington: The Mathematical Association American, 2000.
KLEINER, I; MOVSHOVITZ-HADAR, N. The role of Paradoxes in the evolution of Mathematics. The American Mathematical Monthly, vol. 101, n. 10, p. 963-974. Mathematical Association of America: Washington, 1994.
KLINE, M. Euler and Infinites Series. Mathematics Magazine, vol. 56, n. 5, p. 307-314. Mathematical Association of America: Washington, 1983.
KLINE, M. Mathematical Thought from Ancient to Modern Times. New York: Oxford University Press, 1972.
LIMA, E. L. Curso de análise. 2v., v.1. Rio de Janeiro: IMPA, 2000.
MALLET, M. C. Histoire de L’École de Mégare et des Écoles d’Élis et d’Érétrie. Paris: Marie-Nyon, 1845.
RADATZ, H. Students' errors in the mathematical learning process: a survey. For the Learning of Mathematics, v.1, n.1, p.16-20, July, 1980.
SWETZ, F.; FAUVEL, J.; BEKKEN, O.; JOHANSSON, B.; KATZ, V. (Eds.) Learn from the Masters. Washington: The Mathematical Association of America, 1995.
ZEVORT, M. C. Diogéne de Laerte – Vies et Doctrines des Philosophes de L’Antiqueté. Tome I e II. Paris: Charpentier, 1847.
Descargas
Publicado
Métricas
Visualizações do artigo: 171 PDF (Português (Brasil)) downloads: 151
Cómo citar
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.